## POWER MEASURING INSTRUMENTS

## Digital Power Meters WT1010/WT1030/WT1030M



The increasing need for energy conservation in recent years has resulted in a daily increase in power converter operating frequencies for achieving miniaturization and higher efficiency. Therefore the need for high accuracy power measurement, e.g. of the distorted waveform, in higher frequency is increasing.

Taking for example inverter driven motors, the carrier frequency goes up to 15 kHz by adopting IGBT, on the other hands, evaluation in low speed rotation is also in demand. Therefore users are looking for power meters with wider than usual bandwidth.

We developed a new power meter with high basic performance, high noise immunity and high reliability. The model WT1000 achieves high speed, high accuracy and wide bandwidth measurements by using a digital sampling system. Furthermore it has motor evaluation function measuring output signals from a torque meter (torque and revolution speed) and compute total efficiency of the motor.

## FEATURES

- $\mathbf{1 0}$ measured values $/ \mathbf{1 0 0} \mathbf{~ m s}$ high speed communication
- Measurement of overall motor efficiency by means of motor evaluation function (torque input, revolution speed)
- Real-time waveform output
- High accuracy ( $\mathbf{0 . 1 \%}$ ) \& wide band width (DC, 0.5 Hz to 300 kHz )
- 1000 Vrms high voltage measurement
- Harmonic analysis from a fundamental frequency of 10 to $\mathbf{4 4 0} \mathrm{Hz}$
- Phase measurement between 3-phase inputs and measurement of active, reactive or apparent power of the fundamental wave, by harmonic analysis


## SPECIFICATIONS

## Input

| Item | Voltage | Current |
| :---: | :---: | :---: |
| Input circuit type | Floating input |  |
|  | Resistive voltage divider | Shunt input |
| Rated inputs (ranges, rms) | $\begin{aligned} & 15 / 30 / 60 / 100 / 150 / \\ & 300 / 600 / 1000 \mathrm{~V} \end{aligned}$ | Direct input: 0.5/1/2/5/10/20 A External input (optional): 250/500 m/1/2.5/5/10 V |
| Input impedance | Approx. $2.4 \mathrm{M} \Omega$, approx. 13 pF | Direct input: Approx. $6 \mathrm{~m} \Omega+$ approx. $0.07 \mu \mathrm{H}$ External input: Approx. $100 \mathrm{k} \Omega$ |
| Instantaneous maximum allowable input ( 20 ms for 1 cycle) | Peak voltage of 4.0 kV , or RMS value of 2.8 kV , whichever is less | Peak current of 450 A, or RMS value of 300 A, whichever is less External input: Peak value of no more than 15 times the range |
| Instantaneous maximum allowable input (1 s) | Peak voltage of 2.8 kV , or RMS value of 2.0 kV , whichever is less | Peak value of 150 A , or RMS value of 40 A , whichever is less External input: Peak value of no more than 10 times the range |
| Continuous maximum allowable input | Peak voltage of 2.0 kV , or RMS value of 1.5 kV , whichever is less | Peak current of 100 A , or RMS value of 30 A , whichever is less External input: Peak value of no more than 5 times the range |
| Continuous maximum common mode voltage | 600 Vrms (When the protective cover for the output connector is used) CAT II 400 Vrms (When the protective cover for the output connector is removed) CAT II |  |
| Common mode rejection ratio at 600 Vrms between input terminals and case | At $50 / 60 \mathrm{~Hz}: \pm 0.01 \%$ of range maximum (voltage input terminals shorted, and current input terminals open) Reference value: 100 kHz maximum $\pm\{$ (maximum range rating) $/$ (range rating) $\times 0.001 \times 1 \%$ of range or less, but no less than $0.01 \%$; Unit of $f$ is kHz . |  |
| Input terminals | Binding posts | Large binding posts; External input: BNC |
| A/D conversion | Simultaneous sampling of voltage and current inputs: Resolution: 16 bits; Maximum conversion rate: Approx. $17 \mu \mathrm{~s}$ |  |
| Range switch | Range can be switched manually, automatically or by communication control, for each element. |  |
| Automatic range switching | Range up: When the measured value exceeds $110 \%$ of the rated range or the peak value exceeds approximately $330 \%$ of the rated range <br> Range down: When the measured value becomes $30 \%$ or less of the rated range |  |
| Measurement mode switching | The following modes can be set for each element, and also for each voltage and current measurement circuit <br> RMS: True RMS <br> MEAN: Rectified mean calibrated to RMS value <br> DC: Simple mean |  |

## Display Functions

Display update period: Peak hold function:
Response time:
Display scaling function:

Selectable from $100,250,500 \mathrm{~ms}, 2$, and 5 s . Vpk and Apk can be held at maximum value. Maximum of twice the display update rate +100 ms The display of PT ratio, CT ratio and power scaling factor can be scaled.
The decimal point position and unit are determined in such a way that the resolution of the voltage or current range, 300000 , is not exceeded.
Setting range: 0.0001 to 10000

Averaging function:

- For normal mode measurements

The following two functions can be selected:
Exponential averaging
Moving averaging The attenuation constant can be set in the case of exponential averaging, and the number of averages $(\mathrm{N})$ can be set to $8,16,32,64,128$ or 256 in the case of moving averaging.

- For harmonic mode measurements

For exponential averaging the attenuation constant is 5.625 when the frequency of the PLL sync source is 55 Hz or more but less than 75 Hz , and is 4.6875 in other cases.

## External Control

Signals
EXT-HOLD, EXT-TRIG, EXT-PRINT
Input

## WT1010/WT1030/WT1030M

## Measurement Functions

|  | Voltage/current | Power |
| :---: | :---: | :---: |
| Method | Digital multiplication method |  |
| Crest factor | "3" at rated input |  |
| Temperature: $23 \pm 5^{\circ} \mathrm{C}$ <br> Humidity: 30 to 75\% RH <br> Supply voltage: specified voltage $\pm 5 \%$ Input waveform; sine wave Common mode voltage: 0 V Line filter: OFF. Power factor: $\cos \varphi=1$ <br> 3-month accuracy The unit of f is kHz . | DC: <br> $\pm(0.1 \%$ of rdg $+0.2 \%$ of rng) <br> $0.5 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$ : <br> $\pm$ ( $0.1 \%$ of rdg $+0.3 \%$ of rng) <br> $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$ : <br> $\pm(0.1 \%$ of rdg $+0.1 \%$ of rng $)$ <br> $66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$ : <br> $\pm(0.1 \%$ of rdg $+0.2 \%$ of rng $)$ <br> $1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$ : <br> $\pm(0.08 \times f \%$ of $\mathrm{rdg}+0.3 \%$ of rng$)$ <br> $10 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$ <br> $\pm(0.04 \times f \%$ of $\mathrm{rdg}+0.7 \%$ of rng$)$ <br> $100 \mathrm{kHz}<\mathrm{f} \leq 300 \mathrm{kHz}$ <br> $\pm(0.12 \times(f-100) \%$ of $r d g+5 \%$ of rng) <br> However, the accuracy between <br> 0.5 and 10 Hz and also at 100 <br> kHz or above is the design value. | DC: <br> $\pm$ ( $0.2 \%$ of rdg $+0.3 \%$ of rng ) <br> $0.5 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$ : <br> $\pm$ ( $0.2 \%$ of rdg $+0.5 \%$ of rng) <br> $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$ : <br> $\pm(0.1 \%$ of rdg $+0.1 \%$ of rng) <br> $66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$ : <br> $\pm(0.2 \%$ of rdg $+0.2 \%$ of rng) <br> $1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$ : <br> $\pm(0.09 \times f \%$ of $\mathrm{rdg}+0.4 \%$ of rng) <br> $10 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$ : <br> $\pm(0.06 \times f \%$ of $r d g+1.0 \%$ of rng) <br> $100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$ <br> $\pm(0.22 \times(\mathrm{f}-100) \%$ of $\mathrm{rdg}+$ $7 \%$ of rng) <br> However, the accuracy between 0.5 and 10 Hz and also at 100 <br> kHz or above is the design value. |
| Effect of power factor The unit of $f$ is kHz . |  | When $\cos \varphi=0$ $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$ : <br> Add 0.25\% of range Reference data: Up to 100 kHz Add $(0.15+0.2 \times f) \%$ of range |
| Effective input rang | 10 to $110 \%$ of range rated value |  |
| Tempera | $\pm 0.03 \%$ of range $/{ }^{\circ} \mathrm{C}$ between 5 and $18^{\circ} \mathrm{C}$ and between 28 and $40^{\circ} \mathrm{C}$ |  |
| 1-year accur | The reading error of the 3-month accuracy is multiplied by a factor of 1.5. |  |
| LEAD/LAG phase detection accuracy | When both the voltage and current inputs are sine waves, and the input level is $50 \%$ or more of the range rating: $\pm 5$ deg ( 20 kHz to 10 kHz ) |  |
| Line filter function | Measurement can be done when a low-pass filter is inserted into the input circuit. <br> The cutoff frequency (fc) can be selected $500 \mathrm{~Hz}, 1 \mathrm{kHz}$, 2 kHz and 6.5 kHz |  |
| Accuracy when line filter is ON | Voltage/current: For fc/5 or below, add $1 \%$ of reading to the accuracy when the filter is OFF. <br> Power: For $\mathrm{fc} / 5$ or below, add $2 \%$ of reading to the accuracy when the filter is OFF. |  |
| Measurement lower limit frequency | Display update rate Measurement lower limit frequency <br> 100 ms 25 Hz <br> 250 ms 10 Hz <br> 500 ms 5 Hz <br> 2 s 1.5 Hz <br> 5 s 0.5 Hz |  |

Note: The above 3-month and 1-year accuracy values apply after a range or measurement mode has been changed after the warm-up period (approx. 30 minutes).

## Frequency Measurement Functions

Measurement input: Measurement method: Frequency range:

Select one input from $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~A} 1, \mathrm{~A} 2$, and A 3 . Reciprocal method
Display update rate Frequency range

| 100 ms | $40 \mathrm{~Hz} \leq \mathrm{f} \leq 500 \mathrm{kHz}$ |
| :--- | :--- |
| 250 ms | $20 \mathrm{~Hz} \leq \mathrm{f} \leq 500 \mathrm{kHz}$ |
| 500 ms | $10 \mathrm{~Hz} \leq \mathrm{f} \leq 500 \mathrm{kHz}$ |
| 2 s | $2 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$ |
| 5 s | $1.5 \mathrm{~Hz} \leq \mathrm{f} \leq 90 \mathrm{kHz}$ |

$\pm(0.05 \%$ of rdg +1 digit $)$
Input is at least $10 \%$ of rated range.
Frequency filter is ON when input frequency is 100 Hz or less.
Frequency is no more than 440 Hz when frequency filter is ON (however, input must be at least $30 \%$ of rated range).

## Communication Function

Standard model comes with GP-IB \& RS-232-C.
GP-IB
Electrical and mechanical specifications:
IEEE St'd 488-1978 (JIS C 1901-1987)
Functional specifications:
$\begin{array}{ll}\text { Protocol: } & \text { SH1, AH1, T5, } 4 \text {, } \\ \text { IEEE St'd 488.2-1987 } \\ \text { ISO (ASCII) code }\end{array}$
Code used: ISO (ASCII) code
Address:
0 to 30 talker/list
RS-232-C
Transmission mode:
Baud rate:
Start-stop synchronization
75, 150, 300, 600, 1200, 2400, 4800, 9600 bps

## Computing Functions

|  | Active Power (W) | $\begin{aligned} & \text { Apparent Power } \\ & \text { (VA) } \end{aligned}$ | Reactive Power (var) | Power Factor (PF) | Phase Angle (deg) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1-phase 2-wire | W | $V A=V \times A$ | $\sqrt{(V A)^{2}-W^{2}}$ | $\frac{W}{V A}$ | $\cos ^{-1}\left(\frac{\mathrm{~W}}{\mathrm{VA}}\right)$ |
|  | Wi $i=1,3$ $\begin{aligned} & \Sigma W \\ & =W_{1}+W_{3} \end{aligned}$ | $\begin{gathered} V A_{i}=V_{i} \times A_{1} \\ i=1,3 \end{gathered}$ $\begin{aligned} & \Sigma \mathrm{VA} \\ = & \mathrm{VA}_{1}+\mathrm{VA}_{3} \end{aligned}$ | vari $_{i}$ $\begin{aligned} & =\sqrt{\left(V A_{i}\right)^{2}-W_{i}^{2}} \\ & i=1,3 \end{aligned}$ <br> $\Sigma$ var $=\mathrm{var}_{1}+\mathrm{var} r_{3}$ | $\mathrm{PF}_{\mathrm{i}}$ $\begin{aligned} & =\frac{W_{i}}{V A A_{i}} \\ & i=1,3 \\ & \sum \mathrm{PF} \\ & =\frac{\Sigma \mathrm{W}}{\Sigma \mathrm{VA}} \end{aligned}$ | $\varphi i$ $\begin{aligned} & =\cos ^{-1}\left(\frac{\mathrm{~W}_{\mathrm{i}}}{\mathrm{VA}_{\mathrm{i}}}\right) \\ & \mathrm{i}=1,3 \\ & \Sigma \varphi \\ & =\cos ^{-1}\left(\frac{\Sigma \mathrm{~W}}{\Sigma \mathrm{VA}}\right) \end{aligned}$ |
|  | Wi $i=1,3$ $\begin{aligned} & \Sigma \mathrm{W}^{2} \\ & =\mathrm{W}_{1}+\mathrm{W}_{3} \end{aligned}$ | $\begin{gathered} \mathrm{VA}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \times \mathrm{A}_{\mathrm{i}} \\ \mathrm{i}=1,3 \end{gathered}$ $\begin{aligned} & \begin{aligned} & \Sigma \frac{\sqrt{3}}{2} \\ &\left(\mathrm{VA}_{1}\right. \\ &\left.+\mathrm{VA}_{3}\right) \end{aligned} \end{aligned}$ | $\begin{aligned} & \operatorname{var}_{\mathrm{i}} \\ & =\sqrt{\left(\mathrm{VA}_{\mathrm{i}}\right)^{2}-\mathrm{W}_{\mathrm{i}}^{2}} \\ & \mathrm{i}=1,3 \\ & \sum \mathrm{var} \\ & =\operatorname{var}_{1}+\mathrm{var}_{3} \end{aligned}$ | $\mathrm{PF}_{\mathrm{i}}$ $\begin{aligned} & =\frac{\mathrm{W}_{\mathrm{i}}}{\mathrm{VA}} \\ & \mathrm{i}=1,3 \\ & \Sigma \mathrm{PF} \\ & =\frac{\Sigma \mathrm{W}}{\Sigma \mathrm{VA}} \end{aligned}$ | $\varphi \mathrm{i}$ $\begin{aligned} & =\cos ^{-1}\left(\frac{\mathrm{~W}_{\mathrm{i}}}{\mathrm{VA}_{\mathrm{i}}}\right) \\ & \mathrm{i}=1,3 \\ & \Sigma \varphi \\ & =\cos ^{-1}\left(\frac{\Sigma \mathrm{~W}}{\Sigma \mathrm{VA}}\right) \end{aligned}$ |
|  | $W_{i}$ $\mathrm{i}=1,2,3$ <br> $\Sigma \mathrm{W}$ $=W_{1}+W_{3}$ | $\begin{aligned} & \mathrm{VA}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \times \mathrm{A}_{\mathrm{i}} \\ & \mathrm{i}=1,2,3 \end{aligned} \quad \begin{aligned} & \sum \mathrm{VA} \\ & =\begin{array}{l} \frac{\sqrt{3}}{3}\left(\mathrm{VA}_{1}\right. \\ \left.\quad+\mathrm{VA}_{2}+\mathrm{VA}_{3}\right) \end{array} \end{aligned}$ | $\begin{aligned} & \operatorname{var}_{i} \\ & =\sqrt{\left(V A_{i}\right)^{2}-W_{i}^{2}} \\ & i=1,2,3 \end{aligned}$ <br> $\Sigma$ var <br> $=$ var $_{1}+\mathrm{var}_{3}$ | $\mathrm{PF}_{\mathrm{i}}$ $=\frac{W_{i}}{V A_{i}}$ <br> $\Sigma \mathrm{PF}$ $=\frac{\Sigma \mathrm{W}}{\Sigma \mathrm{VA}}$ | $\begin{aligned} & \varphi \mathrm{I} \\ & =\cos ^{-1}\left(\frac{\mathrm{~W}_{\mathrm{i}}}{\mathrm{VA}_{\mathrm{i}}}\right) \\ & \mathrm{i}=1,2,3 \\ & \Sigma \varphi \\ & =\cos ^{-1}\left(\frac{\Sigma \mathrm{~W}}{\Sigma \mathrm{VA}}\right) \end{aligned}$ |
|  | Wi $\mathrm{i}=1,2,3$ $\begin{gathered} \Sigma W \\ =W_{1}+W_{2} \\ +W_{3} \end{gathered}$ | $\begin{gathered} V A_{i}=V_{i} \times A_{i} \\ i=1,2,3 \end{gathered}$ $\begin{aligned} & \Sigma \mathrm{VA} \\ & =\mathrm{VA}_{1}+\mathrm{VA}_{2} \\ & \quad+\mathrm{VA}_{3} \end{aligned}$ | $\begin{aligned} & \operatorname{var}_{i} \\ & =\sqrt{\left(\mathrm{VA}_{\mathrm{i}}\right)^{2}-\mathrm{W}_{\mathrm{i}}^{2}} \\ & \mathrm{i}=1,2,3 \\ & \Sigma \text { var } \\ & =\mathrm{var}_{1}+\mathrm{var}_{2}+\mathrm{var}_{3} \end{aligned}$ | $\mathrm{PF}_{\mathrm{i}}$ $=\frac{W_{i}}{V A_{i}}$ <br> $\Sigma \mathrm{PF}$ $=\frac{\Sigma \mathrm{W}}{\Sigma \mathrm{VA}}$ | $\varphi i$ $\begin{aligned} & =\cos ^{-1}\left(\frac{W_{i}}{V_{i}}\right) \\ & i=1,2,3 \\ & \Sigma \varphi \\ & =\cos ^{-1}\left(\frac{\Sigma \mathrm{~W}}{\Sigma \mathrm{VA}}\right) \end{aligned}$ |
| Computating Range | Depends on selected V and $A$ ranges | Depends on selected V and A ranges | Depends on selected Vand A ranges (var $\geq 0$ ) | -1 to 0 to 1 | LEAD 180 to 0 to LAG 180 or 0 to 360 |
| Maximum Display or Display Resolution | 30000 | 30000 | 30000 | $\pm 1.0000$ | 0.01 |
| Computing Accuracy | - | $\begin{aligned} & \pm 0.001 \% \text { of } \\ & \text { VA range } \end{aligned}$ | $\pm 0.001 \%$ of VA range | $\pm 0.0001$ | Calculated from the power factor, with an additional error of $\pm 0.005^{\circ}$ |

Notes 1: The apparent power (VA), reactive power (var), power factor (PF), and phase angle (deg) measurement in this instrument are computed digitally from the voltage, current and active power. If the input is non- sinusoidal, the measured values may differ from those obtained with instruments employing different measurement principles.
2: When the Current or Voltage value is less than $0.5 \%$ of range, the VA and var will be displayed 0, and PF/deg will be displayed as Error
3: Regarding the detected accuracy of the Lead and Lag, both voltage and current of the rated input are specified at $50 \%$ or more for sinusoidal waveforms.
The detected Lead/Lag accuracy is $\pm 5$ degree over the frequency range 20 Hz to 10 kHz.
4: When the phase angle display shows an angle smaller than 5 degree at $0^{\circ}$ and $180^{\circ}$, the accuracy is not specified.
5: If the scaling values set for each element differ from each other in the case of $\Sigma$ computation, the number of display digits will be limited so that $\Sigma$ value does not exceed 30000 when the rated value is input to each corresponding element. A voltage of 5 V (full scale) will be output from the $\mathrm{D} / \mathrm{A}$ converter as the $\Sigma$ value obtained when the rated value is input to each corresponding element.
6: As for $\Sigma$ var computation, if a phase condition of current is LEAD against same channel's voltage, the polarity is set to minus(-). Also, if the condition is LAG, it is set to plus(+).

## WT1010/WT1030/WT1030M

| Motor Evaluation Functions (253640) |  |
| :---: | :---: |
| Computing items: | Torque, revolution speed, mechanical power, synchronous speed, slip, motor efficiency and total efficiency |
| Measurement items: | Torque, revolution speed |
| Torque computing analog inputs: |  |
| Input resistance | Approx. $100 \mathrm{k} \Omega$ |
| Accuracy | $\pm(0.1 \%$ of rdg $+0.1 \%$ of F.S.) |
| Effective input range: | Up to $\pm 11 \mathrm{~V}$ |
| Rated input: | $10 \mathrm{~V} / \mathrm{F} . \mathrm{S}$. |
| Temperature coefficient: $\pm 0.03 \%$ of rng/ ${ }^{\circ} \mathrm{C}$ |  |
| Revolution speed computing analog input: |  |
| Input resistance | Approx. $100 \mathrm{k} \Omega$ |
| Accuracy | $\pm(0.1 \%$ of rdg + 0.1\% of F.S.) |
| Effective input range | Up to $\pm 11 \mathrm{~V}$ |
| Rated input | $10 \mathrm{~V} / \mathrm{F} . \mathrm{S}$. |
| Temperature coefficien | nt $\pm 0.03 \%$ of rng/ ${ }^{\circ} \mathrm{C}$ |
| Revolution speed computing pulse input: |  |
| Input resistance | Approx. $200 \mathrm{k} \Omega$ |
| Accuracy | $\pm(0.05 \%$ of rdg + 2 digits) |
| Effective frequency range |  |
| 100 ms | $25 \mathrm{~Hz} \leq \mathrm{f} \leq 200 \mathrm{kHz}$ |
| 250 ms | $10 \mathrm{~Hz} \leq \mathrm{f} \leq 200 \mathrm{kHz}$ |
| 500 ms | $5 \mathrm{~Hz} \leq f \leq 200 \mathrm{kHz}$ |
| 2 s | $1.5 \mathrm{~Hz} \leq \mathrm{f} \leq 50 \mathrm{kHz}$ |
| 5 s | $0.5 \mathrm{~Hz} \leq f \leq 25 \mathrm{kHz}$ |
| Amplitude input range | Up to $\pm 10 \mathrm{~V}$ peak |
| Effective amplitude | 1 Vpp minimum |

## D/A Outputs (optional)

| Number of outputs | 14 items (can be set for each channel) |
| :--- | :--- |
| Accuracy | $\pm$ (display accuracy $+0.2 \%$ of F.S.) |
| Output voltage | $\pm 5 \mathrm{~V} \mathrm{F.S}. \mathrm{(approx}. \pm 7.5 \mathrm{~V}$ maximum) with respect to |
|  | each rated value |
|  |  |
| Maximum output current | $\pm 1 \mathrm{~mA}$ |
| Temperature coefficient | $\pm 0.05 \%$ of rng/ ${ }^{\circ} \mathrm{C}$ |
| Update rate: | Identical to update rate |
| Output format |  |

Frequency For Err-Lo, 0 V is output, and for Err-Hi, approx. 7.5 V is output


## Integrated value

$$
\begin{aligned}
& \begin{array}{c}
\text { D/A output } \\
\text { Approx. } 7.0 \mathrm{~V}
\end{array} \\
& \text { For manual integration mode }=\text { Set time of integration for D/A outputs }
\end{aligned}
$$

## Other items



## Printer (optional)

Printed contents:
Normal measurement: Printout of numerical values Data up to an arbitrarily set item can be output. When the harmonic analysis function (optional) is used: Printout of numerical values - V, A, W, VA, var, deg, PF
Bar chart - V, A, W, deg
Printing method: $\quad$ Thermal line-dot printing

## Integrator Functions (optional)

Display resolution:
300,000
The minimum display resolution changes along with the lapse of the integration time.
Mode: $\quad$ Standard integration mode (timer mode)
Continuous integration mode (repetitive mode)
Manual integration mode
Integration can be automatically stopped by means of a timer setting.
Set value 000 h 00 min to 999 h 59 min
(When set value is 000 h 00 min , manual mode is activated.)
If the integrated value exceeds $\pm 999999$ MWh (MAh), the lapsed time is held and the counter stops. $\pm$ (Display accuracy $+0.05 \%$ of rdg) $\pm 0.005 \%$

Accuracy:
Timer accuracy:

## Harmonic Analysis Function (optional)

Method
Frequency range

Items to be analyzed
onization method or external sampling clock PLL synchronization: Fundamental frequency between 10 and 440 Hz
External sampling clock: The fundamental frequency is between 0.5 and 20 Hz .
$\mathrm{V}, \mathrm{A}, \mathrm{W}$, deg harmonic levels, RMS voltage, RMS current, power, VA, var, and PF of the fundamental wave, inter-element phase angle, $\Sigma \mathrm{V}, \Sigma \mathrm{A}, \Sigma \mathrm{W}$, total harmonic distortion, harmonic content
Sampling speed/Window width/Order
PLL synchronization The above parameters depend upon the input fundamental frequency as follows.
Fundamental frequency Sampling speed Window width Order

| $10 \leq f<20$ | $f \times 2048$ | 4 periods of $f ;$ | $50(50)$ |
| :--- | :---: | :--- | :--- |
| $20 \leq f<40$ | $\mathrm{f} \times 1024$ | 8 periods of $f ;$ | $50(50)$ |
| $40 \leq \mathrm{f}<70$ | $\mathrm{f} \times 512$ | 16 periods of $f ;$ | $50(50)$ |
| $70 \leq \mathrm{f}<130$ | $\mathrm{f} \times 256$ | 32 periods of $f ;$ | $50(25)$ |
| $130 \leq \mathrm{f}<250$ | $\mathrm{f} \times 128$ | 64 periods of $f ;$ | $50(13)$ |
| $250 \leq \mathrm{f} \leq 440$ | $\mathrm{f} \times 128$ | 64 periods of $f ;$ | $50(9)$ |
| ampling clock |  |  |  |
| ndamental frequency <br> $0.5 \mathrm{~Hz} \leq \mathrm{f} \leq 20$ | Sampling speed | Window width | Order |
| $\mathrm{f} \times 2048$ | 4 periods of $f ;$ | $50(50)$ |  |

The values in parentheses apply to when the anti-aliasing filter is ON.
Use an external sampling clock that is 2048 times the fundamental frequency.
This clock must be a TTL level rectangular wave that has a duty of $50 \%$.
FFT data length
8192
FFT processing word length 32 bits

## POWER MEASURING INSTRUMENTS

## WT1010/WT1030/WT1030M

Window function

Accuracy
When the anti-aliasing filter is ON
Voltage/Current
$0.5 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$
$\pm(1 \%$ of rdg $+0.3 \%$ of rng) $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}:$
$\pm(1 \%$ of rdg $+0.1 \%$ of rng) $66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}:$
$\pm(1 \%$ of rdg $+0.2 \%$ of rng)
$1 \mathrm{kHz}<\mathrm{f} \leq 3.5 \mathrm{kHz}$ :
$\pm(2 \%$ of $\mathrm{rdg}+0.3 \%$ of rng)
The aliasing up to 40 th order at a fundamental frequency of $50 / 60 \mathrm{~Hz}$ is at least -50 dB .
When the anti-aliasing filter is OFF, the above parameters are the same as for normal measurement.
Relative deviation between PLL synchronization source and sampling frequency within $\pm 0.03 \%$
Effective input range:
The peak value is up to 3 times the range rated value.

## General Specifications

EMI Standard:
EMS Standard:
Safety standard:

Operating altitude:
So $0^{\circ} \mathrm{C}$
-25 to $60^{\circ} \mathrm{C}$
Operating humidity range: 20 to $80 \%$ RH (no condensation)
Warmup time: Approx. 30 minutes
Insulation resistance: At least $50 \mathrm{M} \Omega$ at 500 V DC
(between each terminal and case, between terminals, between each terminal and power plug, between case and power plug)
Withstand voltage
3700 V AC $50 / 60 \mathrm{~Hz}$ for 1 minute
(between each terminal and case, between terminals,
between each terminal and power plug)
1500 V AC $50 / 60 \mathrm{~Hz}$ for 1 minute
(between case and power plug)
Rated supply voltage: $\quad 100$ to $120 \mathrm{~V} \mathrm{AC}, 200$ to 240 V AC
Allowable supply voltage variation: 90 to $132 \mathrm{~V} \mathrm{AC}, 180$ to 264 V AC
Rated supply frequency: $50 / 60 \mathrm{~Hz}$
Allowable supply frequency variation: 48 to 63 Hz
Power consumption:
130 VA Max
Vibration test conditions: Sweep test; 2-way sweep from 8 to 150 Hz in all 3 directions for 1 minute each
Durability test; Frequency 16.7 Hz , amplitude of 4 mm in all 3 directions for 2 hours each
Impact conditions:
Free-fall test:
External dimensions
Weight:

Height 100 mm once on each of 4 side $426(\mathrm{~W}) \times 132(\mathrm{H}) \times 400(\mathrm{D}) \mathrm{mm}$, $16.8(\mathrm{~W}) \times 5.2(\mathrm{H}) \times 15.8(\mathrm{D})$ inches 3-phase, 4-wire model; Approx. 10 kg ( 21.8 lbs ), Single phase model; Approx. 9 kg ( 19.6 lbs )

## Waveform Output (optional)

Method
Conversion speed
Output voltage

D/A output method
Identical to $\mathrm{A} / \mathrm{D}$ converter at input circuit
Approx. 2 V output for input range rating

## Standard Accessories

Power cord: 1
Fuse: 2
Remote control connector: A1005JD $\times 1$
External input connector cable (when/EX1 or /EX2 is added):
B9284LK 1 per element
Printer paper (when /B5 is added) : B9293UA 2 rolls

## - Range Special - Tokuchu Model

70A rms input (Max. 100A range): for motor evaluation
2A to 50 mA rms input (Standard $\times \frac{1}{10}$ ranges): for small power measurement
2 V to 50 mV rms input (Standard $\times \frac{1}{5}$ ranges): for wide range current sensor

## AVAILABLE MODELS



## - Wiring and Models

| Wiring $\quad$ Model | $\mathbf{2 5 3 6 1 0}$ | $\mathbf{2 5 3 6 2 0}$ | $\mathbf{2 5 3 6 3 0 , 2 5 3 6 4 0}$ |
| :--- | :---: | :---: | :---: |
| Single phase 2-wire | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Single phase 3-wire | - | $\bigcirc$ | $\bigcirc$ |
| 3-phase 3-wire (2-voltage, 2-current) | - | $\bigcirc$ | $\bigcirc$ |
| 3-phase 3 wire (3-voltage, 3-current) | - | - | $\bigcirc$ |
| 3-phase 4-wire | - | - | $\bigcirc$ |

## Optional Accessories

| Name | Model or <br> part No. | Specification | Q'ty |
| :--- | :---: | :---: | :---: |
| Rack mounting | 751535-E3 | EIA | 1 |
| Rack mounting | 751535-J3 | JIS | 1 |
| Printer paper | B9293UA | 58 mm width, <br> 10 m (1 roll 1 unit) | 10 |
| External input <br> connector | B9284LK | Necessary when/EX1 or /EX2 <br> is to be installed and used | 1 |

## DIMENSIONS

Common to all models:
Unit: mm (inches)


